Quantifying sediment volume retained in hydrological correction check dams by means of high-resolution DEMs in a semiarid rangeland of SW Spain

Alberto Alfonso-Torreño, Álvaro Gómez-Gutiérrez, Susanne Schnabel, José Juan de SanJosé-Blasco, Manuel Sánchez Fernández

Institute of Sustainable Territorial Development (INTERRA), University of Extremadura, Cáceres, Spain
albertoalfonso@unex.es

Abstract—Soil erosion by water is a frequent soil degradation process in rangelands of SW Spain. Sediments retained in hydrological correction check dams are an extraordinary source of information to estimate soil erosion rates and understand sediment fluxes. Unlike other more classical monitoring methods, Unmanned Aerial Vehicles (UAV) provide high spatial resolution, ideal for estimating soil erosion based on the volume of sediment deposited behind the dams. Two hundred sixty nine check dams spatially distributed in a farm (239 ha) in SW Spain accumulated sediments during a period of 23 years and were used to estimate the sediment volume.

The methodology included the following steps: 1) flying the study area with a fixed-wing UAV to capture high-resolution aerial photographs and surveying Ground Control Points (GCPs) by means of a GNSS, 2) Structure-from-Motion photogrammetry using the acquired photographs and the GCPs, 3) processing and editing the DEMs and point clouds to create and model the current and the past soil surface, 4) estimating the volume of sediments behind each check dam and 5) Spatial and statistical analysis of the dataset.

DEM and orthophotographs were obtained with a Ground Sampling Distance of 0.04 m and a Root Mean Square Error (RMSE) of 0.01 m. The DEMs of Difference approach was used including as a level of detection of change the RMSE and the interpolation errors. The total sediment volume deposited in the 160 check dams was 413.47 m3 (0.07 m3 ha$^{-1}$ y$^{-1}$) ranging from 0.01 m3 to 107.62 m3 for individual sites, resulting in an average deposition rate of 0.129 m3 y$^{-1}$. Check dams with longer walls retained more sediments, as well as those located in valley bottoms while some check dams were completely useless. The efficiency of the check dams was tested according to their characteristics.

I. INTRODUCTION

Soil erosion has been recognized as the main cause of land degradation throughout the world. Deforestation, overgrazing and land use changes are the factors that encourage erosion in the dehesa landscape, an agrosilvopastoral land use system widespread in the Iberian Peninsula as well as in other Mediterranean areas. The two main erosive processes in these areas are sheetwash erosion in hillslopes and gully erosion due to concentrated flow in valley bottoms [1].

Studies carried out in dehesa systems during the period 1990-1997 [2,3,4], determined an average sheetwash erosion rate of 0.63 t ha$^{-1}$ y$^{-1}$, while gully erosion produced an average loss of 4.17 m3 y$^{-1}$ [5]. More recent studies in dehasas estimated erosion rates in the order of 21-38 t ha$^{-1}$ y$^{-1}$ [6], using exposed tree roots [7] and 137Cs [8]. To our knowledge, studies showing medium-term soil erosion rates in dehesa landscape are scarce. The existence of 269 check dams established 23 years ago over a surface of 239 ha represents a valuable source of information for soil erosion studies in these landscapes.

There are several methods to estimate the sediment volume accumulated in check dams: Geometric methods equate the deposit to a geometric shape, such as prism [9], pyramid [10], and topographic methods develop interpolations from topography, such as DEM [11], trapezoids [12] and sections [13]. Nevertheless, topographical methods require intensive fieldwork and are more accurate [14]. The recent development of UAV platforms facilitates the acquisition of high resolution aerial photos from which SfM [15] photogrammetry can be applied to obtain point clouds, DEMs and orthophotos. The concurrent use of UAV platforms and SfM photogrammetry allows to produce high-resolution and accurate DEMs for relatively large surfaces.

The objective of the present work is to estimate the volume of sediments deposited in check dams established 23 years ago in a dehesa farm. High-resolution DEMs produced using UAV+SfM were used for this purpose. Additionally, the spatial variability of the accumulated sediments was studied and the efficiency of check dams in different locations was analyzed.
II. STUDY AREA

The study was carried out in six catchments (293 ha), located in a Communal farm, SW of the Iberian Peninsula (Fig. 1). The area is representative of the dehesa land use system.

The six catchments form part of an extensive erosion surface of undulating topography. The higher parts of the catchments present and undulated topography and the slope gradient increases to the South, approaching to the Almonte River. The average altitude is 327 meters and the slope is 18.9%. The study area is composed of low order catchments with drainage networks flowing to the south where they join the Almonte River (tributary of the Tagus River). Principal channels have an average length of 1380 m with tributaries, many of them ephemeral and discontinuous, joining the main branch. Most of the soils in the study area are shallow and developed on schists, dominating the Cambisols and Leptosols [16]. Climate is Mediterranean with an average annual temperature of 16ºC and an average annual rainfall of 514.3 mm with high seasonality. The vegetation is composed of a disperse cover of Mediterranean oak (Quercus ilex) and, to a lesser extent, wild olive trees (Olea europea var. sylvestris) and herbaceous plants in the understory. Livestock rearing is the main land use, with 425 goats, 125 cows and 100 calves, 10 pigs and 35 horses in the study area.

A. Field survey and photogrammetry

The aerial photographs were acquired using a fixed-wing UAV (Ebee by Sensefly) carrying on board a Sony WX220 sensor (18 Mpx). Thirteen GCPs were registered using differential GPS and used later to scale and georeferenced the 3D model.

The photographs and GCPs were used as input in the SfM workflow. Pix4D software was used for this purpose. The resulting cartographic products included point clouds, DEMs and orthophotographs.

B. Sediment volume estimation

Two DEMs were necessary to estimate the volume of deposited sediments. The first one represents the current topography and is the SfM-derived DEM. The initial topography, i.e. the surface just before check dam construction, was obtained digitizing the sediment deposit in each check dam, suppressing points in the cloud within that polygon and interpolating the antecedent surface using the surrounding points and the topo to raster algorithm. This strategy uses the topography of the valley and channel original slope.

A DEMs of Difference (DoD) [17] approach was used to subtract the current DEM from the antecedent DEM. In order to discriminate real geomorphic change, the RMSE of the SfM workflow and the interpolation errors associated to the antecedent surface were incorporated in the DoD analysis as a minimum level of detection. Individual errors in DEMs can be propagated to the DoD [18] as:

\[E_{DoD} = \sqrt{(E_{DEM1})^2 + (E_{DEM2})^2} \]

where \(E_{DoD} \) is the error propagated into the DoD, \(E_{DEM1} \) is the interpolation error associated to the antecedent DEM (before check dam construction) and \(E_{DEM2} \) is the RMSE of the SfM-derived DEM (after check dam construction).

The interpolation error for the antecedent surface was obtained simulating virtual check dams and their associated deposits (using dimensions of real check dams and sediment accumulations). The points in the cloud within the polygon that simulates the check dam and the deposit were suppressed. Then, we used the topo to raster algorithm to interpolate the antecedent surface. This antecedent surface was finally compared to the actual DEM. This interpolation error is expected to be variable depending on 1) check dams’ topographic position, i.e. valley bottoms or hillslope, due to the morphology of the channel and 2) check dam size. Therefore,
check dams were classified in four categories: (1) those located in valley bottoms with more than 8 m in length and (2) less than 8 m in length; (3) check dams located on hillslopes with more than 8 m in length and (4) less than 8 m in length. Errors were estimated for each category and applied as minimum level of detection for real world check dams.

Finally, knowing the difference between the two DEMs and hence, the sediment volume deposited in each check dam, soil erosion rates were calculated considering the dates of check dams establishment that varied from 1994 to 2006.

IV. RESULTS

A point cloud with a volumetric point density of 39.22 per m³ on average was obtained and DEMs and orthophotographs with a GSD of 0.04 m resulted from the SfM processing.

Tables I, II and III present descriptive statistics of the sediment volume retained in check dams for each catchment, depending on its length and its topographic position.

Two hundred sixty nine check dams were identified and digitized, from which only 160 were suitable to quantify the deposited sediment volume (i.e. without dense vegetation cover). The total volume deposited was 413.47 m³ with an average of 2.58 m³ in each check dam, ranging from 0 to 107.62 m³.

TABLE I. SEDIMENT VOLUME RETAINED IN EACH CATCHMENT. STD=STANDARD DEVIATION.

<table>
<thead>
<tr>
<th>Catchment</th>
<th>N</th>
<th>Mean</th>
<th>STD</th>
<th>Minimum</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>m³</td>
<td>m³</td>
<td>m³</td>
<td>m³</td>
<td>m³</td>
</tr>
<tr>
<td>A</td>
<td>7</td>
<td>34.06</td>
<td>40.56</td>
<td>0.00</td>
<td>107.62</td>
</tr>
<tr>
<td>B</td>
<td>43</td>
<td>0.74</td>
<td>3.00</td>
<td>0.00</td>
<td>19.87</td>
</tr>
<tr>
<td>C</td>
<td>29</td>
<td>1.27</td>
<td>3.00</td>
<td>0.00</td>
<td>11.74</td>
</tr>
<tr>
<td>D</td>
<td>49</td>
<td>0.51</td>
<td>0.62</td>
<td>0.00</td>
<td>2.80</td>
</tr>
<tr>
<td>E</td>
<td>21</td>
<td>1.94</td>
<td>3.46</td>
<td>0.00</td>
<td>11.30</td>
</tr>
<tr>
<td>F</td>
<td>11</td>
<td>3.71</td>
<td>4.58</td>
<td>0.46</td>
<td>13.86</td>
</tr>
<tr>
<td>All</td>
<td>160</td>
<td>2.58</td>
<td>10.74</td>
<td>0.00</td>
<td>107.62</td>
</tr>
</tbody>
</table>

A total of 127 check dams (80%) retained less than 1 m³ of sediment, from which 102 retained less than 0.5 m³ (Fig. 2). A higher volume of sediment (1-20 m³ and >20 m³) was retained in 30 and 3 check dams, respectively. By catchments, A and F present check dams with higher sediment volumes. On the contrary, B and C present fewer check dams with higher volumes. The average rate of deposition at each dam site was 0.129 m³ y⁻¹, resulting in an approximate deposition rate of 0.07 m³ ha⁻¹ y⁻¹.

Regarding the size of the check dams, larger check dams (>15 m) retained 6.69 m³ on average, ranging from 0 m³ to 19.87 m³. Check dams with 7-15 m in length retained an average of 4.75 m³. These check dams accumulated 45% of the total sediment volume deposited. Finally, check dams with less than 7 m in length have a very small sediment volume, with 0.25 m³.

TABLE II. SEDIMENT VOLUME DEPOSITED ON CHECK DAMS WITH DIFFERENT SIZES. STD=STANDARD DEVIATION.

<table>
<thead>
<tr>
<th>Check dam length</th>
<th>N</th>
<th>Mean</th>
<th>STD</th>
<th>Minimum</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>m³</td>
<td>m³</td>
<td>m³</td>
<td>m³</td>
<td>m³</td>
</tr>
<tr>
<td>0 – 7 m</td>
<td>84</td>
<td>0.25</td>
<td>0.28</td>
<td>0.00</td>
<td>1.11</td>
</tr>
<tr>
<td>7 – 15 m</td>
<td>60</td>
<td>4.75</td>
<td>16.87</td>
<td>0.00</td>
<td>107.62</td>
</tr>
<tr>
<td>> 15 m</td>
<td>16</td>
<td>6.69</td>
<td>5.91</td>
<td>0.46</td>
<td>19.87</td>
</tr>
</tbody>
</table>

According to their location, valley bottom check dams retained a larger amount of sediments, with an average of 3.51 m³ (n=115, std. dev. 12.56 m³). On the other hand, check dams located on hillslopes retained smaller volumes of sediments, with 0.22 m³ on average (std. dev. 0.29 m³).
TABLE III. VOLUME OF SEDIMENT RETAINED IN CHECK DAMS WITH DIFFERENT TOPOGRAPHIC LOCATION. STD=STANDARD DEVIATION.

<table>
<thead>
<tr>
<th>Topographic location</th>
<th>N</th>
<th>Mean</th>
<th>STD</th>
<th>Minimum</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hillslope</td>
<td>45</td>
<td>0.22</td>
<td>0.29</td>
<td>0.00</td>
<td>1.04</td>
</tr>
<tr>
<td>Valley bottom</td>
<td>115</td>
<td>3.51</td>
<td>1.26</td>
<td>0.00</td>
<td>107.62</td>
</tr>
</tbody>
</table>

V. CONCLUSIONS

The concurrent use of fixed-wing UAV platform and the SM photogrammetry allowed to produce accurate high-resolution point clouds, DEMs and orthophotographs. The simulation of the antecedent surface allowed to understand the magnitude of the error and the use of a DoD approach.

According to the results only a few check-dams were actually efficient, particularly those located in valley bottoms. These findings could be of interest for regional planners interested on implementing restoration measures in the future.

The average rate of sediment deposition was 0.129 m3 yr$^{-1}$ and the total volume deposited was 413.47 m3 (1.73 m3 ha$^{-1}$). This average soil erosion rates deduced from estimations of sediment volume deposition in the check dams underestimate the actual soil erosion rate. Nevertheless, these results are valuable to understand the magnitude and the spatial variability of the soil erosion rates and processes in dehesa landscapes.

ACKNOWLEDGMENTS

Alfonso-Torreño is a beneficiary of a PhD scholarship (PD16004) of the Regional Government of Extremadura. This study was financed by the Spanish Ministry of Economy and Competitiveness (CGL2014-54822-R).

REFERENCES